BEST: International Journal of Management, Information \

Technology and Engineering (BEST: IJMITE) % Best JOU rnals

ISSN 2348-0513 .
Knowledge to Wisd
Vol. 2, Issue 5, May 2014, 9-14 4 nowlecge - TTsCom

© BEST Journals

SOFTWARE AND HARDWARE DEFENSE METHODS AGAINST CACHE -BASED SIDE
CHANNEL ATTACKS

DEEVI RADHA RANI & S. VENKATESWARLU 2
"Women Scientist, Department of CSE, KL Universigddeswaram, Guntur, Andhra Pradesh, India

“Mentor, Professor Department of CSE, KL Universisddeswaram, Guntur, Andhra Pradesh, India

ABSTRACT

Cryptographic algorithms implementing on a crypsgric device leak information through side channels
Cache behavior in modern processors can be useal side channel and retrieve the key used in crypfpgc
implementations. Cache based side channel attaeksesious hazard against modern computers withecatemory.
This paper surveys the software and hardware deferethods against cache-based side channel attadkanalyze the

efficient defense method against cache based batmel attack.
KEYWORDS: Cryptographic Algorithms, Cache Based Side ChaAtteck, Software Defense, Hardware Defense
INTRODUCTION

Cryptosystems implementing cryptographic algorithneak information through side channels e.g.,
power consumption, electromagnetic emanation aedwion time. The information leaked from side aela is used to
retrieve the key of a cryptographic algorithm. Pgwedectromagnetic, and timing attacks are wellwinaside-channel
attacks. Side channel attacks exploit the vulnétalof the cryptographic implementations, cachedsh side channel
attacks are one kind of such attacks. Cache badedChannel Attacks are serious hazard against maxenputers with
cache-memory. The cache-based side channel attatriesve the keys by utilizing the relationship weén the leaked
information from the cache and the data-dependahiet lookups which are employed in the cryptographi
implementations [1]. Kocher predicted that RAM oadtits could produce timing characteristic in tpliementations of
various cryptographic algorithms if tables in meyowere not used identically in every encryption][10
Also, Page proposed a theoretical model for namgwhe possible values of secret information andtpd out that the

cache could be used as a side channel [11].
OVERVIEW OF CACHE BASED SIDE CHANNEL ATTACK

According to the types of leaked information taketo use, such attacks fall into three categoriésie-driven
attacks, which exploit the aggregate execution tioeer a large number of samples; trace-driven kdtac
which analyze individual cache hits and missesi¢tdyinformation; and access-driven attacks, whbescache accesses
are spied by another process.

In this paper, the focus is on software Cache basdd channel attacks: Access-driven and time-drive
which recover cipher keys by exploiting side chdrinformation leaks caused by the implementatiorcigfptographic
algorithms and data dependent behavior of cacheamerccess-driven attacks exploit the correlati@tween the secret
key and the cache usage of a crypto thread/pro&@isse the cache is shared among multiple prockissssds,
an attacker may derive the cache usage of thenwjtocess by controlling a carefully crafted praceghich runs together

with the victim process [4].

10 Deevi Radha Ran& S. Venkateswarlu

Time-driven attacks measure the execution timesiafm processes and exploit the correlation betwde
secret key and the number of cache misses whitirindetermines the execution time to infer the |yIn spite of the
differences of these strategies, the cache-baseiddiattacks all depend on the fact that the exscutime of an
encryption process is directly affected by the nemdff cache misses and share the goal of narrothimgossible values

of the cipher key.

The time-driven attacks are easy to implement amtmg types of cache-based side channel attacks,
as they require less leaked information. Berndiesh put this idea into reality and successfulfyreed out the attacks on
the AES algorithm [12]. Bonneau proposed a diffestrategy which aimed at the last round of the Afigdrithm rather
than the first round. He assumed that the execuiioa of the AES encryption would cost more if lesshe collision

occurred during the runtime [13].
SOFTWARE DEFENSE AGAINST CACHE-BASED SIDE CHANNEL A TTACKS

There are several countermeasures to prevent $seofoinformation through a side channel breacthefcache

behavior.
Turn-off Cache S-Box Access

Traditional method to turnoff cache access is tmawe cache but it seems unrealistic since it remaile
instructions depend on cache. So an alteration ddemwhere only the instructions that access cachereanoved.
Turning off the cache for S-box access, essenti@thploying cache-bypass to always load data dyréaiin memory.
By eliminating the potential for cache-hits andtmnisses, reduces performance significantly bstienthat each access
takes the same length of time. This kind of defenaa easily be implemented in software need to fpottie

cryptographic algorithm in use.
Avoid Lookup Table

Constant Time Implementation which means that ttecetion time does not depend on the secret ketheor
input data. Avoid table lookups/S-boxes and use esoform of computed non-linear transformation indtea
This not only offers greater assurance of constiamt access, but allows the potential for paratedcution of such
transformations which are denied by the need fquestial memory access. Another constant time esom@asure is the
bitslice implementation of the AES. It does not umey lookup tables with key or data-dependent addrée.,

no information can leak through the cache side bl he implementation provides a very high periance.
Perform Cache Warming

Both time driven and trace driven cache based sidmnel attack differentiate cache miss and cadisesh
removing this difference would be good defense oetfio reduce or prevent the leakage of informaitisgalso possible
to warm up the cache [11]. For small S-boxes, tiekdip tables, or parts of them, are loaded intodhehe before
execution begins, called pre-fetching or Cache VitegniThere will be no cache misses if data is loatbecache before
execution and hence no leakage. This kind of deferem be implemented in software easily without iffication in
algorithm. However, this is only true if the S-beantent is never evicted by other data or instamgtiand the S-box fits
entirely into the cache: neither of these assumptiare guaranteed and hence the method can ontiediibed as

statistically sound. As a defense method this tiegtenis good but in terms of performance it is efficient.

Software and Hardware Defense Methods Against Cackeased Side Channel Attacks 11

Insert Dummy Operations

Inserting dummy operations in the algorithm incesti®e execution time. This is considered when kétaperate
on behavior traces rather than timing informatiaith enough dummy loads inserted one cannot be uregiven
cache-hit or cache-miss is produced by real ordadkescution. This method is not efficient since thadomization is
simply noise that can be statistically removed. ifiddally, since extra operations need to be sexithe overall average
execution time might increase by an unattractiveofa This is efficient and can easily implementedoftware by just
adding a single loop to the algorithm. Insertingntioy operations changes the execution time randdraly it is

independent of cache activity.
Reorder Memory Accesses

Random reordering of memory accesses reduces thelatmn between a captured behavior trace or i@t
timing and the input and algorithm. This can beiesdd by using non-deterministic processor architecbut must be

careful not to introduce potential hazards fromrém@rdering.
Insert Delays

Insert actual random delays in the execution taloarize the overall execution time. This sufferarirthe same
drawbacks of inserting random load operations éngénse that the statistical noise can be remavédvdl potentially

increases the average execution time.
Perform Blinding and Bucketing

Combination of input blinding and bucketing is akb@ countermeasure which is secure and efficigatnat
timing attacks. The blinding randomizes the inpiuthe cryptographic device. The bucketing dividas distribution of the

execution time into intervals and returns the resiuéach encryption at the end of corresponditerual.
HARDWARE DEFENSE AGAINST CACHE-BASED SIDE CHANNEL A TTACKS

 In [7], Page proposed the use of configurable caalghitecture to provide hardware assisted defense.
The cache is dynamically split into protected regiand can be specifically configured for an apypidn.
In partitioned caches, a part of the cache is atkxt exclusively to the protected process in otdeprevent
information leakage. This may cause inefficient heasharing since the cache partition is fixed cdlti.
Partitioned cache architecture can be used as siefenechanism against cache based channel attack.
A partitioned cache is added to devices which ataerable to side channel attacks. Partitioned eaelyregates
the cache behavior of one process to other. Itgmavintra process interference i.e. it provideh whough space
to store entire S-box in cache and locks when paedd. Segregation does not allow to forcibly fltish cache.
Also partitioned cache uses longer cache lines lwihieke attack more difficult. IRCache, & Partitions are
Static, it prevents sharing leading to performadhegradation. A process use only few cache lingkerpartition
and the unused lines are not available to othergsses.

* In [3], the patrtition-locked cache (PLcache) ispmeed to address cache sharing problem with agfiamed
locking control so that only the cache lines, whicimtain the critical data, are isolated. PLcadhmieate cache
interference. The PLcache, with minimal hardwarstcocan help the software developer achieve sgowiihout

losing performance.

12 Deevi Radha Ran& S. Venkateswarlu

In PLCache,interested cache lines are locked by creating f@ipartitions. These cache lines cannot be used by
other cache accesses which are not belonging watprpartitions. PL Cache is flexible cache pantitig mechanism
which achieves less performance degradation. Tta¢ aochitecture of PLCache depends on hardwaréi@ado cache

and system inference for the selection of cacleslio be locked. 3 tags are added to the origacieline.

L | ID | LL | Original cache line

L specifies whether cache line is locked or notspcifies owner of the cache, LL specifies caate Ibcked if
there is access to page or segment. 2 mechanismslynénstruction Set Extension, Segment/Page-b&setkction are
used for controlling which cache lines should bekéml. In Instruction Set Extension, new set of Ietadte instructions are

added to the base ISA which gives control on wiag ¢b lock. New instructions are described below.

Table 1

Name Description

Same as load instruction with the additional
action: If the memory access hits in the cache
or causes a cache line to be fetched into the
cache, the L bit of the cache line is set/cleared.
Same as store instruction with the additional
action: If the memory access hits in the cache
or causes a cache line to be fetched into the
cache, the L bit of the cache line is set/cleared.

Id.lock/ld.unlock

st.lock/st.unlock

In Segment/Page-based protection, regions of meownrtaining tables are marked as locked using fomaalls
like lock_mem_region() and unlock_mem_region(). lany Cache access is same as traditional cachepexchbit is

updated but it differs during cache miss replacdragorithm changes due to locked cache lines.

A

T Choose R for
< Hit? >—Now replacement, based on
- v
”"H-Tf—" replacement policy
¥
L
Yes {.Ré'placut?;'e‘m.x_ Ves
" - -
l ~.allowed?.—
e
Normal cache hit No
handling procedure perform the 1d/st
operation without

. Normal cache miss
replacing R : -

r handling procedure

Update L bit of the Update replacement 1

cache line info of R. e.o. LRLJ -

info of %, N . Update L bit of the

order, so that it won't be .
new cache line

L'I"Il',l.‘ien ﬁ'lT TEleCE"IT'IEI'II

next time

o End e
L End P,

Figure 1. Cache Access Handling Procedure for Piche

Let R be line driven by normal cache replacemegorithm and D be new data block being fetched thi
cache. If D and R are not locked, D replaces Riitlanal cache miss. If D doesn't need to lock bug Rcked, D cannot
replace R. In this case, for load instruction Degirned to processor execution core and for $tteuction data is return
back to next level of memory without replacing RDI needs to be locked, it is allowed to replacg lme that is not

locked or any locked line that belongs to the spnoeess.

Software and Hardware Defense Methods Against Cackeased Side Channel Attacks 13

e Cache interference is the root cause of Cache-battegks so novel general-purpose hardware sokjtion
the RPcache (Random Permutation Cache) randomizke camterference can be used. With a little more
hardware, the RPcache can robustly provide botlrigcand performance, even without input from the
programmer. RPcache approach allows cache shdririgrandomizes the resulting interference, so refulls

information can be inferred.

P Choose R for
< Hit? “>—No— replacement, based on
x“x-r-"' replacement policy
Yes .
Il R belongsto
QP; current Ny
Normal cache hit ;_q%gﬁ;’?’
handling procedure Ves
Y Randomly select set S';
-""'-l"-'-==l’-h'?‘“‘ N replace R'in §';
'* 2 ﬁ_l swap the mappings of §
T . (R
Update Py Yes perform the ld/st . ‘"?d 85 ,
Y opetation without Fix mappings for lines
- ady 1 Q . V.
Normal cache miss replacing a cache line already in S and s
handling procedure !
| .
Randomly select set §'; Update Py,
evict R in §';
e) |
» End
_ S

Figure 2: Cache Access Handling Procedure for Rpcae

* In [9], a precision timed architecture is put fordido achieve the timing-invariance features ofdzare.

The researchers claim that their mechanisms witietely eliminate the cache interference problem.
CONCLUSIONS

Cache based side channel attacks are serious tlgaihst modern computers with cache memory.
This paper presented various software and hardwafense methods against cache based side chariaeksat
By analyzing various defense methods that can Ipéeimented in software, producing non-linear mapind replacing it
with conventional S-box lookup tables would yieidher performance. Partition-locked cache is sugge® achieve the

effect of cache partitioning with less performadegradation.
ACKNOWLEDGEMENTS

| would like to thank DST WOS-A for sponsoring needo this research work and publish. | would alsnk KL

University for their support and facilities to caut my research work.
REFERENCES

1. He Yuemei, Guan Haibing, Chen Kai, Liang Alei, "AeWN Software Approach to Defend against Cache-Based
Timing Attacks,"Information Engineering and Computer Science, 2009. ICIECS 2009. International Conference
on, vol., no., pp.1,4, 19-20 Dec. 2009.

2. Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifertjifjdng Zhou, "Architecting Against Software Cacleséd
Side Channel Attacks,” IEEE Transactions on Comput28 March 2012. IEEE computer Society Digital
Library.

14

10.

11.

12.

13.

Deevi Radha Ran& S. Venkateswarlu

Zhenghong Wang and Ruby B. Lee. 2007, “New caclsggds for thwarting software cache-based side adann
attacks”, InProceedings of the 34th annual international symposium on Computer architecture (ISCA '07).
ACM, New York, NY, USA, 494-505.

Kong, J.; Aciicmez, O.; Seifert, J.-P.; Huiyang BhtHardware-software integrated approaches tondiefgainst
software cache-based side channel attacKégh Performance Computer Architecture, 2009. HPCA 2009.
|EEE 15th International Symposium on, vol., no., pp.393-404, 14-18 Feb. 2009.

0. Acliccmez and C, . K. Koc, “Trace-driven cachigaeks on AES”, Ininformation and Communications
Security ICICS 2006, LNCS 4307, pp. 112-121, Springer Verlag, 2006.

D. Page. Defending Against Cache Based Side-ChaAttakcks. Information Security Technical Report,
volume 8(1): 30-44, 2003

Page, D.: Partitioned cache as a side-channel skefanechanism. IACR Cryptology ePrint Archive,
Report 2005/280 (August 2005)

Malte Wienecke, “Cache based Timing Attacks on FEddeel Systems” available at
http://www.emsec.rub.de/media/crypto/attachmem¢s/f2010/04/ms_wienecke.pdf

Isaac Liu, David McGrogan, Elimination of Side Chah attacks on a Precision Timed Architecture.
Technical Report, 2009. Available at: http://wwvesderkeley.edu/Pubs/TechRpts/2009/EECS-2009-15.pdf

Paul C. Kocher, Timing Attacks on Implementations RQiffie-Hellman, RSA, DSS and other Systems.

Lecture Notes in Computer Science, Springer, 1996.

D. Page, Theoretical Use of Cache Memory as a @ngbytic Side- Channel. Technical Report CSTR-02;00
Department of Computer Science, University of Biist June 2002. Available at:
http://www.cs.bris.ac.uk/Publications/Papers/10@paf.

Daniel J. Bernstein, Cache-timing Attacks on AESaifable at:
http://cr.yp.to/antiforgery/cachetiming-20050414.pd

Joseph Bonneau, Ilya Mironov, “Cache-Collision TigniAttacks Against AES In proceeding of Cryptographic
Hardware and Embedded Systems - CHES 2006, LNCS$, 44 201-215, Springer, 2006.

.
Best Journals

Knowledge to Wisdom

/SubmiT your manucript at editor.bestjournals@gmail.com
Online Submission at http://www.bestjournals.in/submit_paper.php

